Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38642054

RESUMO

Supramolecular polymers display interesting optoelectronic properties and, thus, deploy multiple applications based on their molecular arrangement. However, controlling supramolecular interactions to achieve a desirable molecular organization is not straightforward. Over the past decade, light-matter strong coupling has emerged as a new tool for modifying chemical and material properties. This novel approach has also been shown to alter the morphology of supramolecular organization by coupling the vibrational bands of solute and solvent to the optical modes of a Fabry-Perot cavity (vibrational strong coupling, VSC). Here, we study the effect of VSC on the supramolecular polymerization of chiral zinc-porphyrins (S-Zn) via a cooperative effect. Electronic circular dichroism (ECD) measurements indicate that the elongation temperature (Te) of the supramolecular polymerization is lowered by ∼10 °C under VSC. We have also generalized this effect by exploring other supramolecular systems under strong coupling conditions. The results indicate that the solute-solvent interactions are modified under VSC, which destabilizes the nuclei of the supramolecular polymer at higher temperatures. These findings demonstrate that the VSC can indeed be used as a tool to control the energy landscape of supramolecular polymerization. Furthermore, we use this unique approach to switch between the states formed under ON- and OFF-resonance conditions, achieved by simply tuning the optical cavity in and out of resonance.

2.
Adv Mater ; : e2312791, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38413048

RESUMO

Spontaneous phase separation is a promising strategy for the development of novel electronic materials, as the resulting well-defined morphologies generally exhibit enhanced conductivity. Making these structures adaptive to external stimuli is challenging, yet crucial as multistate reconfigurable switching is essential for neuromorphic materials. Here, a modular and scalable approach is presented to obtain switchable phase-separated viologen-siloxane nanostructures with sub-5 nm features. The domain spacing, morphology, and conductivity of these materials can be tuned by ion exchange, repeated pulsed photoirradiation and electric stimulation. Counterion exchange triggers a postsynthetic modification in domain spacing of up to 10%. Additionally, in some cases, 2D to 1D order-order transitions are observed with the latter exhibiting a sevenfold decrease in conductivity with respect to their 2D lamellar counterparts. Moreover, the combination of the viologen core with tetraphenylborate counterions enables reversible and in situ reduction upon light irradiation. This light-driven reduction provides access to a continuum of conducting states, reminiscent of long-term potentiation. The repeated voltage sweeps improve the nanostructures alignment, leading to increased conductivity in a learning effect. Overall, these results highlight the adaptivity of phase-separated nanostructures for the next generation of organic electronics, with exciting applications in smart sensors and neuromorphic devices.

3.
Chemistry ; 30(8): e202303107, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38009432

RESUMO

Here, we report on the synthesis of discrete oligomers of alkyl-bridged naphthalenediimides (NDIs) and study their molecular nanostructures both in bulk, in solution, and at the liquid-solid interface. Via an iterative synthesis method, multiple NDI cores were bridged with short and saturated alkyl-diamines (C3 and C12 ) or long and unsaturated alkyl-diamines (u2 C33 to u8 C100 ) at their imide termini. The strong intermolecular interaction between the NDI cores was observed by probing their photophysical properties in solution. In bulk, the discrete NDI oligomers preferentially ordered in lamellar morphologies, irrespective of whether a saturated or unsaturated spacer was employed. Moreover, both the molecular architecture as well as the crystallization conditions play a significant role in the nanoscale ordering. The long unsaturated alkyl chains lead preferably to folded-chain conformations while their saturated analogues form stretched arrangements. At the solution-solid interface, well-defined lamellar regions were observed. These results show that precision in chemical structure alone is not sufficient to reach well-defined structures of discrete oligomers, but that it must be combined with precision in processing conditions.

4.
Adv Mater ; 35(47): e2303909, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37572294

RESUMO

Recruiting endogenous antibodies to the surface of cancer cells using antibody-recruiting molecules has the potential to unleash innate immune effector killing mechanisms against antibody-bound cancer cells. The affinity of endogenous antibodies is relatively low, and many currently explored antibody-recruiting strategies rely on targeting over-expressed receptors, which have not yet been identified in most solid tumors. Here, both challenges are addressed by functionalizing poly(propyleneimine) (PPI) dendrimers with both multiple dinitrophenyl (DNP) motifs, as anti-hapten antibody-recruiting motifs, and myristoyl motifs, as universal phospholipid cell membrane anchoring motifs, to recruit anti-hapten antibodies to cell surfaces. By exploiting the multivalency of the ligand exposure on the dendrimer scaffold, it is demonstrated that dendrimers featuring ten myristoyl and six DNP motifs exhibit the highest antibody-recruiting capacity in vitro. Furthermore, it is shown that treating cancer cells with these dendrimers in vitro marks them for phagocytosis by macrophages in the presence of anti-hapten antibodies. As a proof-of-concept, it is shown that intratumoral injection of these dendrimers in vivo in tumor-bearing mice results in the recruitment of anti-DNP antibodies to the cell surface in the tumor microenvironment. These findings highlight the potential of dendrimers as a promising class of novel antibody-recruiting molecules for use in cancer immunotherapy.


Assuntos
Dendrímeros , Animais , Camundongos , Anticorpos , Haptenos , Fagocitose , Dinitrobenzenos , Membrana Celular
5.
Adv Mater ; 35(25): e2300891, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37002556

RESUMO

Efficient energy transport over long distances is essential for optoelectronic and light-harvesting devices. Although self-assembled nanofibers of organic molecules are shown to exhibit long exciton diffusion lengths, alignment of these nanofibers into films with large, organized domains with similar properties remains a challenge. Here, it is shown how the functionalization of C3 -symmetric carbonyl-bridged triarylamine trisamide (CBT) with oligodimethylsiloxane (oDMS) side chains of discrete length leads to fully covered surfaces with aligned domains up to 125 × 70 µm2 in which long-range exciton transport takes place. The nanoscale morphology within the domains consists of highly ordered nanofibers with discrete intercolumnar spacings within a soft amorphous oDMS matrix. The oDMS prevents bundling of the CBT fibers, reducing the number of defects within the CBT columns. As a result, the columns have a high degree of coherence, leading to exciton diffusion lengths of a few hundred nanometers with exciton diffusivities (≈0.05 cm2 s-1 ) that are comparable to those of a crystalline tetracene. These findings represent the next step toward fully covered surfaces of highly aligned nanofibers through functionalization with oDMS.

6.
Mater Horiz ; 9(1): 294-302, 2022 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-34611679

RESUMO

The assembly of donor-acceptor molecules via charge transfer (CT) interactions gives rise to highly ordered nanomaterials with appealing electronic properties. Here, we present the synthesis and bulk co-assembly of pyrene (Pyr) and naphthalenediimide (NDI) functionalized oligodimethylsiloxanes (oDMS) of discrete length. We tune the donor-acceptor interactions by connecting the pyrene and NDI to the same oligomer, forming a heterotelechelic block molecule (NDI-oDMSPyr), and to two separate oligomers, giving Pyr and NDI homotelechelic block molecules (Pyr-oDMS and NDI-oDMS). Liquid crystalline materials are obtained for binary mixtures of Pyr-oDMS and NDI-oDMS, while crystallization of the CT dimers occurred for the heterotelechelic NDI-oDMS-Pyr block molecule. The synergy between crystallization and phase-segregation coupled with the discrete length of the oDMS units allows for perfect order and sharp interfaces between the insulating siloxane and CT layers composed of crystalline CT dimers. We were able to tune the lamellar domain spacing and donor-acceptor CT interactions by applying pressures up to 6 GPa on the material, making the system promising for soft-material nanotechnologies. These results demonstrate the importance of the molecular design to tune the CT interactions and stability of a CT material.

7.
Biomacromolecules ; 22(12): 5363-5373, 2021 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-34846847

RESUMO

Dynamic binding events are key to arrive at functionality in nature, and these events are often governed by electrostatic or hydrophobic interactions. Synthetic supramolecular polymers are promising candidates to obtain biomaterials that mimic this dynamicity. Here, we created four new functional monomers based on the benzene-1,3,5-tricarboxamide (BTA) motif. Choline or atropine groups were introduced to obtain functional monomers capable of competing with the cell wall of Streptococcus pneumoniae for binding of essential choline-binding proteins (CBPs). Atropine-functionalized monomers BTA-Atr and BTA-Atr3 were too hydrophobic to form homogeneous assemblies, while choline-functionalized monomers BTA-Chol and BTA-Chol3 were unable to form fibers due to charge repulsion. However, copolymerization of BTA-Chol3 with non-functionalized BTA-(OH)3 yielded dynamic fibers, similar to BTA-(OH)3. These copolymers showed an increased affinity toward CBPs compared to free choline due to multivalent effects. BTA-based supramolecular copolymers are therefore a versatile platform to design bioactive and dynamic supramolecular polymers with novel biotechnological properties.


Assuntos
Anti-Infecciosos , Streptococcus pneumoniae , Materiais Biocompatíveis/metabolismo , Colina/farmacologia , Polímeros/química , Streptococcus pneumoniae/metabolismo
8.
J Am Chem Soc ; 143(10): 4032-4042, 2021 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-33660998

RESUMO

Discrete block co-oligomers (BCOs) assemble into highly ordered nanostructures, which adopt a variety of morphologies depending on their environment. Here, we present a series of discrete oligodimethylsiloxane-oligoproline (oDMS-oPro) BCOs with varying oligomer lengths and proline end-groups, and study the nanostructures formed in both bulk and solution. The conjugation of oligoprolines to apolar siloxanes permits a study of the aggregation behavior of oligoproline moieties in a variety of solvents, including a highly apolar solvent like methylcyclohexane. The apolar solvent is more reminiscent of the polarity of the siloxane bulk, which gives insights into the supramolecular interactions that govern both bulk and solution assembly processes of the oligoproline. This extensive structural characterization allows the bridging of the gap between solution and bulk assembly. The interplay between the aggregation of the oligoproline block and the phase segregation induced by the siloxane drives the assembly. This gives rise to disordered, micellar microstructures in apolar solution and crystallization-driven lamellar nanostructures in the bulk. While most di- and triblock co-oligomers adopt predictable morphological features, one of them, oDMS15-oPro6-NH2, exhibits pathway complexity leading to gel formation. The pathway selection in the complex interplay between aggregation and phase segregation gives rise to interesting material properties.


Assuntos
Oligopeptídeos/química , Polímeros/química , Prolina/química , Siloxanas/química , Soluções/química , Dicroísmo Circular , Cristalização , Nanoestruturas/química , Oligopeptídeos/metabolismo , Polímeros/metabolismo
9.
Macromolecules ; 53(22): 10289-10298, 2020 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-33250525

RESUMO

Supramolecular block copolymers composed of discrete blocks have promising properties for nanotechnology resulting from their ability to combine well-defined morphologies with good bulk material properties. Here, we present the impact of a well-defined siloxane block in either the main-chain or present as pendant grafts on the properties of supramolecular block copolymers that form ordered nanostructures with sub-5 nm domains. For this, two types of supramolecular block copolymers were synthesized based on the ureidopyrimidinone-urethane (UPy-UT) motif. In the first, oligodimethylsiloxanes (oDMS) of discrete length were end-capped with the UPy-UT motif, affording main-chain UPy-UT-Si n . In the second, the UPy-UT motif was grafted with discrete oDMS affording grafted UPy-UT- g -Si 7 . For the two systems, the compositions are similar; only the molecular architecture differs. In both cases, crystallization of the UPy-UT block is in synergy with phase segregation of the oDMS, resulting in the formation of lamellar morphologies. The grafted UPy-UT- g -Si 7 can form long-range ordered lamellae, resulting in the formation of micrometer-sized 2D sheets of supramolecular polymers which show brittle properties. In contrast, UPy-UT-Si n forms a ductile material. As the compositions of both BCOs are similar, the differences in morphology and mechanical properties are a direct consequence of the molecular architecture. These results showcase how molecular design of the building block capable of forming block copolymers translates into controlled nanostructures and material properties as a result of the supramolecular nature of the interactions.

10.
Adv Mater ; 32(48): e2004775, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33118197

RESUMO

Materials based on the laminar ordering of self-assembled molecules have a unique potential for applications requiring efficient energy migration through densely packed chromophores. Here, employing molecular assemblies of coil-rod-coil block molecules for triplet-triplet annihilation upconversion (TTA-UC) based on triplet energy migration with linearly polarized emission is reported. By covalently attaching discrete-length oligodimethylsiloxane (oDMS) to 9,10-diphenylanthracene (DPA), highly ordered 2D crystalline DPA sheets separated by oDMS layers are obtained. Transparent films of this material doped with small amounts of triplet sensitizer PtII octaethylporphyrin show air-stable TTA-UC under non-coherent excitation. Upon annealing, an increase in TTA-UC up to two orders of magnitude is observed originating from both an improved molecular ordering of DPA and an increased dispersion of the sensitizer. The molecular alignment in millimeter-sized domains leads to upconverted linearly polarized emission without alignment layers. By using a novel technique, upconversion imaging microscopy, the TTA-UC intensity is spatially resolved on a micrometer scale to visually demonstrate the importance of molecular dispersion of sensitizer molecules for efficient TTA-UC. The reported results are promising for anti-counterfeiting and 3D night-vision applications, but also exemplify the potential of discrete oligodimethylsiloxane functionalized chromophores for highly aligned and densely packed molecular materials.

11.
ACS Nano ; 14(10): 13865-13875, 2020 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-32914965

RESUMO

We report two families of naphthalenediimides (NDIs) symmetrically functionalized with discrete carbon chains comprising up to 55 carbon atoms (Cn-NDI-Cn, n = 39, 44, 50, and 55) and their self-assembly at the 1-phenyloctane/highly oriented pyrolytic graphite interface (1-PO/HOPG interface). The compounds differ by the presence or absence of two or three internal double bonds in the carbon chains (unsaturated and saturated Cn-NDI-Cn, respectively). Combinatorial distributions of geometrical isomers displaying either the E- or Z-configuration at each double bond are obtained for the unsaturated compounds. Analysis of the self-assembled monolayers of equally long unsaturated and saturated Cn-NDI-Cn by scanning tunneling microscopy (STM) reveal that all Cn-NDI-Cn tend to form lamellar systems featuring alternating areas of aromatic cores and carbon chains. Extended chain lengths are found to significantly increase disorder in the self-assembled monolayers due to misalignments and enhanced strength of interchain interactions. This phenomenon is antagonized by the local order-inducing effect of the internal double bonds: unsaturated Cn-NDI-Cn give qualitatively more ordered self-assembled monolayers compared to their saturated counterparts. The use of combinatorial distributions of unsaturated Cn-NDI-Cn geometrical isomers does not represent a limitation to achieve local order in the self-assembled monolayers. The self-assembly process operates a combinatorial search and selects the geometrical isomer(s) affording the most thermodynamically stable pattern, highlighting the adaptive character of the system. Finally, the antagonistic interplay between the extended carbon chain lengths and the presence of internal double bonds brings to the discovery of the lamellar "phase C" morphology for unsaturated Cn-NDI-Cn with n ≥ 50.

12.
Angew Chem Int Ed Engl ; 59(39): 17229-17233, 2020 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-32584462

RESUMO

Understanding cell/material interactions is essential to design functional cell-responsive materials. While the scientific literature abounds with formulations of biomimetic materials, only a fraction of them focused on mechanisms of the molecular interactions between cells and material. To provide new knowledge on the strategies for materials/cell recognition and binding, supramolecular benzene-1,3,5-tricarboxamide copolymers bearing benzoxaborole moieties are anchored on the surface of human erythrocytes via benzoxaborole/sialic-acid binding. This interaction based on both dynamic covalent and non-covalent chemistries is visualized in real time by means of total internal reflection fluorescence microscopy. Exploiting this imaging method, we observe that the functional copolymers specifically interact with the cell surface. An optimal fiber affinity towards the cells as a function of benzoxaborole concentration demonstrates the crucial role of multivalency in these cell/material interactions.


Assuntos
Benzamidas/química , Materiais Biomiméticos/química , Ácidos Borônicos/química , Eritrócitos/química , Polímeros/química , Humanos , Substâncias Macromoleculares/química , Microscopia de Fluorescência , Estrutura Molecular , Tamanho da Partícula , Propriedades de Superfície
13.
J Am Chem Soc ; 142(8): 4070-4078, 2020 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-31971383

RESUMO

Achieving long-range order with surface-supported supramolecular assemblies is one of the pressing challenges in the prospering field of non-covalent surface functionalization. Having access to defect-free on-surface molecular assemblies will pave the way for various nanotechnology applications. Here we report the synthesis of two libraries of naphthalenediimides (NDIs) symmetrically functionalized with long aliphatic chains (C28 and C33) and their self-assembly at the 1-phenyloctane/highly oriented pyrolytic graphite (1-PO/HOPG) interface. The two NDI libraries differ by the presence/absence of an internal double bond in each aliphatic chain (unsaturated and saturated compounds, respectively). All molecules assemble into lamellar arrangements, with the NDI cores lying flat and forming 1D rows on the surface, while the carbon chains separate the 1D rows from each other. Importantly, the presence of the unsaturation plays a dominant role in the arrangement of the aliphatic chains, as it exclusively favors interdigitation. The fully saturated tails, instead, self-assemble into a combination of either interdigitated or non-interdigitated diagonal arrangements. This difference in packing is spectacularly amplified at the whole surface level and results in almost defect-free self-assembled monolayers for the unsaturated compounds. In contrast, the monolayers of the saturated counterparts are globally disordered, even though they locally preserve the lamellar arrangements. The experimental observations are supported by computational studies and are rationalized in terms of stronger van der Waals interactions in the case of the unsaturated compounds. Our investigation reveals the paramount role played by internal double bonds on the self-assembly of discrete large molecules at the liquid/solid interface.

14.
J Am Chem Soc ; 141(38): 15456-15463, 2019 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-31483637

RESUMO

Nanomaterials with highly ordered, one- or two-dimensional molecular morphologies have promising properties for adaptive materials. Here, we present the synthesis and structural characterization of dinitrohydrazone (hydz) functionalized oligodimethylsiloxanes (oDMSs) of discrete length, which form both 1- and 2D nanostructures by precisely controlling composition and temperature. The morphologies are highly ordered due to the discrete nature of the siloxane oligomers. Columnar, 1D structures are formed from the melt within a few seconds as a result of phase segregation in combination with π-π stacking of the hydrazones. By tuning the length of the siloxane, the synergy between these interactions is observed which results in a highly temperature sensitive material. Macroscopically, this gives a material that switches reversibly and fast between an ordered, solid and a disordered, liquid state at almost equal temperatures. Ordered, 2D lamellar structures are formed under thermodynamic control by cold crystallization of the hydrazones in the amorphous siloxane bulk via a slow process. We elucidate the 1- and 2D morphologies from the nanometer to molecular level by the combined use of solid state NMR and X-ray scattering. The exact packing of the hydrazone rods within the cylinders and lamellae surrounded the liquid-like siloxane matrix is clarified. These results demonstrate that controlling the assembly pathway in the bulk and with that, tuning the nanostructure dimensions and domain spacings, material properties are altered for applications in nanotechnology or thermoresponsive materials.

15.
Macromolecules ; 52(3): 1200-1209, 2019 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-30792554

RESUMO

Discrete length block co-oligomers (BCOs) comprised of a crystalline and an amorphous block are a new class of materials that gives highly ordered lamellar morphologies at small length scales. Here, we show the preparation of discrete, isotactic oligo l- and d-lactic acid (olLA and odLA) homoblocks followed by ligation to oligodimethylsiloxane (oDMS), affording a library of crystalline-amorphous BCOs that vary in molecular weight and composition. Mixing the two enantiomeric BCOs or homoblocks results in the formation of the corresponding stereocomplex. The properties and phase behavior of the isotactic (block co)oligomers and the stereocomplexes thereof are studied using differential scanning calorimetry and small-angle X-ray scattering. A systematic study of the isotactic homoblock lengths and crystal structure confirmed the formation of a 103 helix with a monomeric rise of 0.3 nm, whereas the stereocomplex adopts a 31 helix. The same type of crystal structure was found for the isotactic and stereocomplex of BCOs giving rise to the formation of lamellar morphologies at room temperature as a result of crystallization of the oLA blocks. Distorted lamellar structures were found in BCOs that preorganize into nonlamellar morphologies prior to crystallization. The stereocomplex BCOs shows more crystal defects and a loss of long-range ordering in the microstructure due to the larger driving force for crystallization. Hence, the balance between chain length, block volume, and the crystallization strength are of major importance for the formation of the final structure with the least defects.

16.
J Mass Spectrom ; 53(1): 39-47, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28963745

RESUMO

Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI TOF MS) was used to analyze a series of synthetic organic ions bearing fixed multiple charges. Despite the multiple intrinsic charges, only singly charged ions were recorded in each case. In addition to the pseudo-molecular ions formed by counterion adduction, deprotonation and electron capture, a number of fragment ions were also observed. Charge splitting by fragmentation was found to be a viable route for charge reduction leading to the formation of the observed singly charged fragment ions. Unlike multivalent metal ions, organic ions can rearrange and/or fragment during charge reduction. This fragmentation process will evidently complicate the interpretation of the MALDI MS spectrum. Because MALDI MS is usually considered as a soft ionization technique, the fragment ion peaks can easily be erroneously interpreted as impurities. Therefore, the awareness and understanding of the underlying MALDI-induced fragmentation pathways is essential for a proper interpretation of the corresponding mass spectra. Due to the fragment ions generated during charge reduction, special care should be taken in the MALDI MS analysis of multiply charged ions. In this work, the possible mechanisms by which the organic ions bearing fixed multiple charges fragment are investigated. With an improved understanding of the fragmentation mechanisms, MALDI TOF MS should still be a useful technique for the characterization of organic ions with fixed multiple charges.

17.
J Am Chem Soc ; 139(42): 14869-14872, 2017 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-28994585

RESUMO

Crystallinity is seldomly utilized as part of the microphase segregation process in ultralow-molecular-weight block copolymers. Here, we show the preparation of two types of discrete, semicrystalline block co-oligomers, comprising an amorphous oligodimethylsiloxane block and a crystalline oligo-l-lactic acid or oligomethylene block. The self-assembly of these discrete materials results in lamellar structures with unforeseen uniformity in the domain spacing. A systematic introduction of dispersity reveals the extreme sensitivity of the microphase segregation process toward chain length dispersity in the crystalline block.

18.
ACS Macro Lett ; 6(7): 674-678, 2017 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-28781926

RESUMO

An experimental study is presented in which we compare the bulk phase behavior of discrete and (partially) disperse diblock co-oligomers (BCOs) with high χ-low N. To this end, oligomers of dimethylsiloxane (oDMS) and lactic acid (oLA) were synthesized, each having either a discrete number of repeat units or a variable block length. Ligation of the blocks resulted in oDMS-oLA BCOs with dispersities ranging from <1.00001 to 1.09, as revealed by mass spectroscopy and size exclusion chromatography. The phase behavior of all BCOs was investigated by differential scanning calorimetry and small-angle X-ray scattering. Compared to the well-organized lamellae formed by discrete oDMS-oLA, we observe that an increase in the dispersity of these BCOs results in (1) an increase of the stability of the microphase-segregated state, (2) a decrease of the overall degree of ordering, and (3) an increase of the domain spacing.

19.
ACS Nano ; 11(4): 3733-3741, 2017 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-28380290

RESUMO

Block molecules belong to a rapidly growing research field in materials chemistry in which discrete macromolecular architectures bridge the gap between block copolymers (BCP) and liquid crystals (LCs). The merging of characteristics from both BCP and LCs is expected to result in exciting breakthroughs, such as the discovery of unexpected morphologies or significant shrinking of domain spacings in materials that possess the high definition of organic molecules and the processability of polymers. Here we report the bulk self-assembly of two families of monodisperse block molecules comprised of naphthalenediimides (NDIs) and oligodimethylsiloxanes (ODMS). These materials are characterized by waxy texture, strong long-range order, and very low mobility, typical properties of conformationally disordered crystals. Our investigation unambiguously reveals that thermodynamic immiscibility and crystallization direct the self-assembly of ODMS-based block molecules. We show that a synergy of high incompatibility between the blocks and crystallization of the NDIs causes nanophase separation, giving access to hexagonally packed columnar (Colh) and lamellar (LAM) morphologies with sub-10 nm periodicities. The domain spacings can be tuned by mixing molecules with different ODMS lengths and the same number of NDIs, introducing an additional layer of control. X-ray scattering experiments reveal macrophase separation whenever this constitutional bias is not observed. Finally, we highlight our "ingredient approach" to obtain perfect order in sub-10 nm structured materials with a simple strategy built on a crystalline "hard" moiety and an incompatible "soft" ODMS partner. Following this simple rule, our recipe can be extended to a number of systems.

20.
Adv Mater ; 28(45): 10068-10072, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27689779

RESUMO

Highly ordered nanopatterns are obtained at sub-5 nm periodicities by the graphoepitaxial directed self-assembly of monodisperse, oligo(dimethylsiloxane) liquid crystals. These hybrid organic/inorganic liquid crystals are of high interest for nanopatterning applications due to the combination of their ultrasmall feature sizes and their ability to be directed into highly ordered domains without additional annealing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...